
Preprint
UCRL-JC-146823

Progressive Precision
Surface Design

M.A. Duchaineau, K.1. Joy

This article was submitted to
SlGGraph 2002 2gth International Conference on Computer
Graphics and Interactive Techniques, S a n Antonio, TX, July 21 -26,
2002

January 11,2002

US. Department of Energy

Laboratory

3

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Govement or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at htb: / /www.doc.Pov/bridPe

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: rep^ rts@adonis .OStl.POV

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: prders@ntisfe . dworld.Pov
Online ordering: m: / /www.ntis.Pov/orderinP.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/ tid/Library.html

http://www.llnl.gov

Progressive Precision Surface Design

Mark A. Duchaineau
Lawrence Livermore National Laboratory

Kenneth I. Joy
University of California, Davis

Figure 1: Precision surface design operations are made practical by our progressive wavelet decomposition. From left: pasting a
template with free-form placement, precision sculpting with path and tool shape, smoothing and roughening within a roped-off area.

Abstract

We introduce a novel wavelet decomposition algorithm that makes
a number of powerful new surface design operations practical.
Wavelets, and hierarchical representations generally, have held
promise to facilitate a variety of design tasks in a unified way by
approximating results very precisely, thus avoiding a proliferation
of undergirding mathematical representations. However, traditional
wavelet decomposition is defined from fine to coarse resolution,
thus limiting its efficiency for highly precise surface manipulation
when attempting to create new non-local editing methods.

Our key contribution is the progressive wavelet decomposition
algorithm, a general-purpose coarse-to-fine method for hierarchical
fitting, based in this paper on an underlying multiresolution repre-
sentation called dyadic splines. The algorithm requests input via a
generic interval query mechanism, allowing a wide variety of non-
local operations to be quickly implemented. The algorithm per-
forms work proportionate to the tiny compressed output size, rather
than to some arbitrarily high resolution that would otherwise be
required, thus increasing performance by several orders of magni-
tude.

We describe several design operations that are made tractable
because of the progressive decomposition. Free-fonn pasting is a
generalization of the traditional control-mesh edit, but for which the
shape of the change is completely general and where the shape can
be placed using a free-form deformation within the surface domain.
Smoothing and roughening operations are enhanced so that an ar-
bitrary loop in the domain specifies the area of effect. Finally, the
sculpting effect of moving a tool shape along a path is simulated.

CR Categories: G. 1.2 mumerical Analysis]: Approximation-
Spline and piecewise polynomial approximation; Wavelets and
fractals; F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems-Computation of transforms;

E.4 [Coding and Information Theory]: Data compaction and com-
pression; 1.3.5 [Computer Graphics]: Computational Geometry and
Object ModelingXurve, surface, solid, and object representa-
tions; Geometric algorithms, languages, and systems; Hierarchy
and geometric transformations; Splines; J.6 [Computer-Aided En-
gineering]: Computer-aided design (CAD)
Keywords: surface editing,wavelets,progressive computation

1 Introduction

The process of designing geometric shapes via computation is a
critical activity for the making of films, computer games, automo-
biles and many other ends. Underpinning this design activity are
mathematical representations and associated algorithms that facil-
itate a wide variety of manipulations of shape, such as creating
overall proportions, placing details, then deforming the shape or
otherwise modeling various quasi-physical manipulations. Unfor-
tunately, no single mathematical representation is known that will
provide exact analytic results to all surface operations of interest.
Rather than introduce more and more specialized mathematics, a
recent trend has been to support many operations in a single, uni-
fied representation using approximation theory and hierarchical al-
gorithms DRose et al. 1998; Lee et al. 2000; Guskov et al. 2000,
Cirak et al. 2002; Perry and Frisken 20011. However, so far only
local operations have been generally supported in an efficient way
for surface editing lLounsbery 1994; Zorin et al. 19971. In this pa-
per, we introduce the first multiresolution framework that allows
coarse-to-fine (Le. progressive) computation of a broad set of non-
local shape manipulations.

The key technique we introduce is the progressive wavelet de-
composition, whereby the usual fine-to-coarse filtering and trunca-
tion is replaced by coarse-to-fine selective refinement. This switch
in orientation is generally not possible unless the input data are rep
resented and operations are evaluated in a generic hierarchical fa-
sion, which we term interval queries. The abstract input interface
to the progressive wavelet decomposition is therefore in the form
of an interval query oracle, which the transform calls in response
to selective refinement requests on the operation output. The inter-
val query mechanism is inspired by the methods of interval analy-
sis moore 19791, and the research into modeling systems built on
those concepts [Snyder and Kajiya 1992; Kass 19921. A simple,
hierarchical parametric representation, dyadic splines [Duchaineau
19961, is used at the lowest level. A dyadic spline is defined by al-
ternately performing B-spline refinement and adding displacement

vectors. The coarse-to-fine processing proceeds in the following

1. Split a leaf of the domain-interval bintree in two, and put the
(so far uncomputed) wavelet Coefficients overlapping these in-
tervals at that scale onto to the active coefficient list.

2. Invoke the interval-query oracle to the target function, which
provides a local Bdzier patch estimate and error bound. Do
this on all the domain intervals that the newly-active wavelet
coefficients depend on.

I phases:
I

%

3. In this neighborhood, compute the estimated values and asso-
ciated error bounds of the scaling function coefficients, dyadic
spline displacements, and wavelet coefficients using the ap-
propriate local weighted-average filters.

4. Propagate improved values up to coarser resolutions if war-

The split request can be made in any order that an application
chooses. A good generic ordering of these requests involves placing
the domain bintree leaves on a priority queue ordered by the size of
the error bounds in the neighborhood. These phases are repeated
over and over until a desired accuracy is achieved or a desired time
limit is reached.

ranted, using the local wavelet decomposition filters.

We evaluate our approach with respect to six criteria:

1. Output-sensitive computation: Our progressive decomposi-
tion algorithm performs work proportionate to the compressed
(approximated) output size. This is similar to the best algo-
rithms in more specialized settings such as view-dependent
optimization [Hoppe 1997; Duchaineau et al. 19971, multires-
olution surface editing [Forsey and Bartels 1988; Zorin et al.
19971, and multiresolution painting [Berman et al. 19941, yet
provides a kind of generic “plug in” architecture that eases the
addition of new manipulation operations.

2. Guaranteed error bounds: The formulation of our trans-
form not only is guaranteed to converge, but provides strict
error bounds at every step in the progressive sequence.

3. Fixed memory footprint: We provide a caching system for
the interval queries that allows the transform to restrict the
working memory footprint to a tiny subset of the total data
accessed, traversed, evaluated or output.

4. Rate-diirtion curves: Our coarse-to-fine processing pro-
duces accuracies comparable to traditional fine-to-coarse
methods at higher refinement, but suffers somewhat at coarser
resolutions because the selective refinement and local approx-
imations are based on “fuzzy” knowledge of the underlying
function. In a sense this is the price that must be paid to get
progressive computation, but it does not appear affect overall
convergence rates.

5. Selective refinement: the algorithm allows applications that
know where and in what order they want detail in a function
domain. Interestingly, this includes feeding the output of the
progressive transform into other interval-query oracles and
progressive transforms, leading to a closed system for pro-
gressive computation.

6. High-level design tools: We devised surface design applica-
tions that are interesting in their own right but make a large
point: they show the possibility of quasi-physical operations
that more closely match the intuition gained from non-digital
model building, as opposed to the tedium of “pulling on the

control net” by hand. In a sense this follows in the foot-
steps of the development of Computational Solid Geometry
(CSG) mequicha and Voelcker 19821, free-form deformations
[Sederberg and Parry 19861, and hyperpatch modeling [Joy
19911.

2 Dyadic Spline Representation

This section will give a brief review of the dyadic spline represen-
tation, giving its formulation and the properties most critical the the
progressive decomposition algorithm. Complete details are avail-
able in Duchaineau 19961.

The general idea is depicted in Figure 2. An initial coarse grid
of control points is alternately split and perturbed until some l i t
function is produced. The common uniform B-spline weighted av-
eraging is used, and the perturbations are simple vector additions.
The set of functions represented in this way is dense in Lp, meaning
that all functions of interest in practical situations can be accurately
converted to a dyadic spline.

double

perturb

double

perturb

limit

Figure 2 A dyadic spline is the limit of a sequence of doubling (B-
spline refinement) and perturbing (hierarchical displacement) oper-
ations. A broad class of functions can be stored this way, but more
importantly this view of a function facilitates a general form of pro-
gressive evaluation and computation.

To begin the definitions required, first recall the bintree decom-
position of an m-cube. Bintrees are based on the dyadic rationals

A hierarchy of one-dimensional intervals may be indexed by Zevel
L and position i, as shown in Figure 3 for the subintervals of [0, 1).
These intervals are defined concisely as

0 e = o I I
0 I 1 e = 1 I I I

0 1 1 , 2 1 3 e = 2 I 1 I I

01 1 1 2 1 3 1 4 1 5 1 6 1 7 e = 3 I 1 I I I I I I

4

Figure 3: The dyadic interval hierarchy.

For higher dimensions, the hierarchy of one-dimensional intervals
becomes a hierarchy of two- or three-dimensional intervals by split-
ting intervals in half along one axis at a time, as shown in Figure 4.

2-D - 3-D

Figure 4 Bintree intervals in higher dimensions.

The intervals now have a level e, current axis a, and m indices
lI , . . . , zm:

-
't,a,i ,,..., in -'t+1,i1 X*. .x' t+~, i , , -~ X 4 , i . X . .*X' t , i , , ,

It is important to keep this hierarchy in mind, since it forms the
fundamental spatial structure that all the various weighted averag-
ing schemes make use of. In particular, displucements and range
positions associated with will be denoted by Df,+ and Pf,i re-
spectively.

The B-spline subdivision is given by the weighted-averaging for-
mula

where the an,j. and f ln, j weights are given in Figure 5. A diagram
of the domain intervals involved is given in Figure 6.

Figure 5: Dyadic Refinement weights.

This is extended to include the displacements by the recurrence

Pt,2i = xjan,jPt?-1,i+j+Df,2i
Pf,2i+l = xjBn,jPf-I,i+j+Df,2i+l

Note that in this simple form (without wavelets), the dyadic spline
is defined by the base control mesh Po and displacements Df for L =
1, - - - ,=. Of particular importance to the coarse-to-fine progressive
decomposition is the dependencies (i.e. stencils of support) in the
subdivision process, shown in the cubic case in Figure 7.

The 1-D formulation just given is extended to m dimensions by
the usual tensor-product mechanism, in which the one-dimensional
filtering is applied along each of the axis, one at a time. The result
of applying the cubic recurrence for three nonzero displacements is
shown for a 2-D domain in Figure 8.

Figure 6 Dyadic Refinement intervals

///\\
Figure 7: Dependencies in the case of cubic subdivision.

The remainder of the formulation for dyadic splines involves
specifying linear operators (filters):

s =
F =
c = compact the displacements
E = expand displacements back again

subdivide to obtain the next finer
fit points to the next finer

The subdivision operator S has in effect already been defined, so
that we can restate the dyadic spline recurrence as

The subdivision filter, combined with the fit, compaction and ex-
pansion filters, form the usual wavelet decomposition bank depicted
in Figure 9. Note that the C operator in effect eliminates the factor
of two redundancy in the displacement representation of a function.
In wavelet parlance, the Pf,i values are scalingfunction coe#cients,
and the compacted displacements Qf,i are wavelet coefiients.

These three filters are defined as follows. The fit operator a p
proximates the ideal least-squares fit operator

R- = (STS)-'S=

but with finite support. These operators should satisfy the following

I O [:] = [0 I]
In other words, the operation of fitting and compacting the differ-
ences from prediction should be the inverse of the operation of sub-
dividing and expanding the compacted differences. By setting the
central (near diagonal) elements of F to F, and leaving an appro-
priate number as available degrees of freedom, this inverse prop
erty can be maintained by solving a tiny linear system Dchaineau
19961. In practice these filters have stencils of support similar to the
subdivision weight masks shown earlier, and form a kind of wavelet
decomposition. An alternative derivation of wavelets for computer
graphics may be obtained in [Stollnitz et al. 19961.

The filters are applied in various orders depending on the oper-
ation desired. For traditional wavelet decomposition, one assumes

Figure 8: A 2-D dyadic spline with three nonzero displacements.
The interals that end up forming individual polynomial pieces are
indicated with bold borders.

P2-' .-Q2

Ft c V E
P3 ' , -Q3

Figure 9: The dyadic spline wavelet filter bank, showing the data
flow dependencies and scale relationships of the four filters F (fit),
S (subdivide), C (compact) and E (expand).

some fine-level Pl is given, and the computation proceeds as

...
P3 = FP4 Q3 = CP4
P2 = FP3 Q2 = CP3 ...

For synthesis, this is reversed

...
P3 = SPz+EQ3
P4 = SP3+EQ3 ...

Let us presume that the ideal target function (the result of an
editing operation, for example), is denoted g(t), and that we have
available an oracle that will return a local BCzier-curve estimate
for t E of &(f) = XjGl,i,jBl,i,j(f), where the Gl,i,j are con-
trol points and Bl,i,j(t) are the Bernstein basis functions of some
desired polynomial degree parin 19993. In addition to the local
polynomial, we also need an error estimate El,i such that g(t) E
[&#) - El,i ,gl , i(f) +Elli] for t E ki. We defer the discussion of
how to form these estimates to the application sections, but gen-
erally this relies on having input functions in a hierarchical form,
and on using variants of interval analysis Moore 19791 to create
the result of the interval query. Note that there is no need to ob-
serve continuity between gl,;s for our purposes; the later filtering
process is immune to this and simply works best with accurate es-
timates, regardless of continuity (in effect because it is performing
a convolution over these estimates with kernels that do not involve
delta functions).

Suppose in a progressive decomposition that we desire to have
estimates for Pl,i for some intermediate level of resolution I, for
example at the leaves of the current bintree refinement. Given the
filters F, C , E, and S we can then compute all the positions P,,i,
displacements D,,i and wavelet coefficients Q,,i for levels I' < I
(values at or coarser than 9. So our problem is reduced to sim-
ulating what would happen if we were to perform the wavelet fil-
tering on the infinitely resolved BCzier curves. Since the filtering
process, even in this limit, is fundamentally just a linear operation
of weighted averaging, we can separately precompute the infinite-
limit wavelet decomposition of the Bernstein basis functions, and at
runtime s@ply look these results up to directly compute estimated
positions Pl,i as a weighted average of the nearby estimate control
points Gl.?. i :

, I-

for the precomputed Bernstein-basis limit fits & j . Note that due
to scale invariance these weights depend only on relative position
s and basis function index j , not on the level L. The estimate fit
kernels /3s,j are shown in Figure 10. Note that the nonzero weights
are in a narrow local neighborhood.

To convert from the simple dyadic spline representation (base-mesh
plus displacements) to wavelets, while at the same time keeping a
consistent and optimized version of the displacements, the follow-
ing is used

...
D3 += FD4 Q3 = CD4 D4 = EQ3
0 2 += FD3 QZ = CD3 D3 = EQZ ...

This level of redundancy is useful for the formulation and imple-
mentation of surface design operations. At the end of the day, only
the base mesh and wavelet coefficients are stored to disk or sent
over the network.

3 Progressive Wavelet Decomposition

Looking at the wavelet filter bank in Figure 9, the computation of
the wavelet coefficients would appear to require an order of
processing working from fine to coarse resolution, which we some-
how need to reverse.

Figure 10: Estimate-fit kernels & j for dyadic splines of degree
n = 1, ,3 (with respective filter width parameter k = 1,1,2), and
for Bernstein basis functions for degrees 0,1,2.

The various positions, displacements and wavelet coefficients,
',,i, D,,i, and Q, i , can now be computed using the wavelet filters.
It is straightforw&d to obtain strict error bounds on these values
since error bounds on the inputs are known and the entire process
is simple linear weighted averaging Moore 19791.

The wavelet decomposition algorithm proceeds to use this ma-
chinery to create a progressive sequence of increasingly accurate
approximations to the target function g(t). A pictorial example is
shown in Figure 11. The target function in this case is a sequence

of “bumps within bumps” defined as the sum of transendental
functions, specifically, translated a dilated versions of the “mother
bump” { ;m2(54 if t E (-1,l)

b(t) = otherwise
These bump functions have closed forms for their derivatives of var-
ious degrees, and known monotonic regions, so it is straightforward
to create local estimates with bounds.

~ t

Figure 11: A target function with extremely fine-scale features
(shown as a sequence of insets) is progressively computed into a
wavelet decomposition under the max error norm (L). The pro-
gressive transform selectively refines where errors are not guaran-
teed to be low, leading to a natural adaptation of the refinement
around the fine features. In this example, the transform is com-
puted over a thousand times faster than if a sufEciently fine uniform
sampling of the target function were used as the starting point.

The rate-distortion curve for the example is plotted in Fig-
ure 12 (in black), compared to the usual greedy algorithm that uses
fine-tocoarse processing to throw away wavelet coefficients that
comtribute least to the error. Note especially that the accuracies are
relatively worse for the progressive transform at low numbers of co-
efficients (due to it’s fuzzy awareness of the target function), yet it
“catches up” to the quality and convergence rates of the traditional
greedy algorithm at higher counts.

The extension to the tensor-product setting is straightforward, as
all the filtering operations just described can be performed on one
axis at a time just as with subdivision. Whereas a univariate bintree
decomposition was indexed by level L and index i, the multi-
variate bintree requires an additional axis counter a E {1, ... ,m}

95
90
85
80
75
70
65

30
25
15
10
5
0

2o

1 2 4 8 16 32 64 128 256 512 102420484096
N-

Figure 12 Coarse to fine progression of our new transform (black)
is relatively low accuracy compared to the traditional greedy al-
gorithm at low coefficient counts, yet is nearly identical at higher
counts.

and multiple indices i,, . . . , im. To simplify the appearance of the
multivariate bintree intervals

will be used, where 2 = (L,a) and i = (il, . . . , im). The composi-
tion 49 = (L , a) will be refered to as a layer, and is analogous to the
level in the univariate case. Note that the intervals Z9,i still form
a binary tree. The displacements are now denoted D9,i, and the
positions P2,i.

An example progression for a 2-D domain with a few conical
bumps is shown in Figure 13. Note how the progressive decompo-
sition naturally adapts to the sharp features of this target function.

In the remainder of this paper we will exploit the progressive
wavelet transform to create four new higher-level surface design
operations.

4 Smoothing and Roughening within a

This section will descibe the implementation of signal processing
operations within a restricted domain area defined by a closed loop
of Bkzier curves. The first notion is that of performing global
smoothing, which is defined for smoothing parameter Ls as

General Loop

ifL<Ls
if 1- 1 < L, 5 L
otherwise (Ls 5 L - 1)

D2,i = (Ls - (L - 1))D2,i r
This is similar to the smoothing defined in pinkelstein and Salesin
19941, but here extended to higher dimensions via tensor products.

For local smoothing, a generalization of the smoothing segment
is needed. For this, a smoothing area is defined using the concept
of a trim curve [Casale 19871, previously used in the methods for
trimmed surface patches. A trim curve c(t) is a continuous, periodic
mapping from t E [0,1] to the surface domain (u,v) E S2. This
curve encloses a domain area that will serve as the locality to be
smoothed.

The smoothing operation blends between the original displace-
ments D2,i and the smoothed ones D9,i. The blend factor q is
defined as the fraction of D9,i’s interval of influence ZD that over-
laps the area enclosed by c(t). The computation of this overlap is

4

Figure 14 A formerly rough surface is smoothed within the area
enclosed by a trim curve.

Figure 13: A demonstration of the progressive wavelet decomposi-
tion of a function as a height with 2-D domain, consisting of two
overlay4 conical protrusions. The wavelet coefficients are built in
a coarse-to-fine sequence, shown from top to bottom.

discussed momentarily. The blend factor q is then applied as:

Some results of local smoothing are shown in Figure 14.
It is nontrivial to compute the area of overlap of an interval I

and the area enclosed by a trim curve c(t). However, the well-
known Wamock algorithm for polygon visibility mamock 19691
can be adapted to this problem. Although the concern here is only
for determining the area of a single “polygon” c(t) within a “view
window” I, the Wamock algorithm has a useful property of divid-
ing I into smaller intervals until each interval either misses c(t),
c(t) crosses the interval in a simple way, or the interval is small.
Winding number computations are used in this algorithm to deter-
mine which intervals (or which parts of crossed intervals) are in-
side the trim curve. To apply the polygon techniques to a curve,
the curve must be approximated by a polygon. For the purposes
of interactive editing, it is sufficient to ensure that the approxima-
tion error is within a small fraction of the width of the interval I.
If c(t) is a dyadic spline, or is in B-spline form, standard subdivi-
sion techniques can be applied to accomplish this [Farin 19991. In
the implementation used here, “simple” crossings consist of two or
fewer polygon edges, and a bintree decomposition of I is used. An
example Wamock-style decomposition of a trim area is shown in
Figure 15.

For roughening, we added random displacements in the manner
of midpoint-displacement fractals w l l e r 19861. However, the di-
rection of the displacements is taken to be in the normal direction of
a smoothed version of the surface, similar to what was done in the
curve case in [Finkelstein and Salesin 19941. The offset frame for
a surface displacement D9,i is defined as the two unit tangents and

Figure 15: Decomposition of the trim-curve domain area using a
variant of the Wamock algorithm.

unit normal at the point of maximum influence, taken with respect
to the smoothed version of the surfjxe.

Let f (u, v) be the surface and f (u, v) be a smoothed version of
the surface for smoothing parameter e,. Then the offset coordinate
frame applied to offset displacement b9,i is then defined as

A9, i = [P q rl

where

r = &
and (um)Vm) is the domain point of maximum influence. Now the
application of A9,i to b9,i gives the standard displacement as

This gives the effect that details track the position and orientation
of the smooth underlying surface.

Global roughening is produced by adding random vectors in the
local smoothed-normal direction to the fine-resolution wavelet co-
efficients. The localization of the roughening effect is accomplished
in the same manner as local surface smoothing. An example of lo-
cal roughening is shown in Figure 16.

L

Figure 17: A simple extruded hill shape is offset from the input
surface in the continuous, smoothed local normal directions. The
placement of the offset template is specified with an S-shaped bicu-
bic B6zier patch controlled in the input-surface domain.

Figure 16 Random fractal offsets are made in the local smoothed
normal direction. The magnitude of the offset is modulated by the
Warnock inlout overlap fractions.

5 Free-form Pasting

In this section we make a more flexible version of the Pasting oper-
ation introduced in [Barghiel et al. 19951. The idea is to allow an ar-
bitrary template shape to be offset from the input surface, where the
placement of the template is given by a general domain-to-domain
mapping. This placement strategy is akin to a free-form deforma-
tion [Sederberg and Parry 19861 in the 2-D case. We similarly
choose a bicubic Btzier patch to formulate the 2-D to 2-D map
ping. The advantage of the earlier pasting formulations is that we
have somewhat more general template placement and shape con-
trol, but most importantly our results are computed in progressive
order to any accuracy for the precise, continuous offset definition.

Let the input surface be f (u , v) . Let g(s , t) be a scalar-valued
template function and let h(s,t) be an invertible domain-positioning
function into (u, v). The basic template edit effect is defined as

P(u, v) = f (u , v) + cG(u, v)

G(u, VI = g(h-'(u, 4)

where c is a control vector for the generalized basisfuncrion

Note that h-'(u, v) is only defined for (u, v) E h(J) where J is the
interval domain of h(s,t). When appropriate, assume that G(u, v) is
zero when (u,v) $ h(J). Also note that the control vector c may be
derived from another control vector c^ that is defined in a local offset
frame A, similar to the offset-frame displacements for roughening.

 he result of a template edit, f (u , v) , is approximated using the
progressive transform. Local estimates are formed using interval-
analytic techniques. This approximation process is described
shortly. An example result of template editing is depicted in Fig-
ure 17.

The template edit result f (u , v) is approximated by using the
progressive transform to approximate the generalized basis_ func-
tion G(u,v) = g(h-'(u,v)). This approximation, denoted G(u,v),
scales a control vector c before added it to f (u , v) . The approxi-
mate template-edit result is f'(u,v) = f (u , v) + ce(u ,v) . Applying
the progressive decomposition algorithm to approximate G(u, v) re-
duces to finding local estimates. The remainder of this section will
discuss the computation of suitable local estimates.

This discussion will use first-order interval estimates throughout.
To develop an estimate for g(h-'(u,v)), an estimate will first be
constructed for h-'(u,v) based on an estimate of h(s,t). This will
be composed with an estimate of g(s,t) to give the desired estimate
of g(h-'(u, v)) .

Let h(s,t) have the first-order interval estimate

i (s , f) = H [i] + [2] + S

where H is an invertible 2 x 2 matrix, and 6 is an interval in (u, v)
space. Assume that this estimate holds for h-'(Z), where Z is an
interval in (u, v) space. ~n interval estimate for h-' (u, v) is

i-' (u, v) = H-' [:I+[:] + E

where

and where the error interval E is chosen so that

E 3 -H-'S

This estimate holds for (u,v) E I . The error E may -: computed as
the bounding box of the image of the four comers of 6 under the
transform -H-'.

Now suppose g(s , t) has the estimate

for error interval ‘y, and suppose this holds for (s , t) E h-’(Z). Then
I an estimate for g(h-’ (u, v)) over z is

L-

For a surface f (u , v), let f (u , v) be the smoothed version of the
surface for smoothing parameter &. The tangents of this smoothed
surface are normalized to give

These normalized tangents are approximated as dyadic splines (us-
ing the progressive transform) to allow the second stage of smooth-
ing. Let P(u, v) and Q(u, v) be the approximations to the normalized
tangents, and p(u,v) and q(u,v) be the smoothed versions of these
for smoothing parameter &. A final normalization and cross prod-
uct gives the axis vectors of the desired offset frame

The result depth will be

D(u,v) = max{DT(u,V),Ds(u,v))

Since the surface position f(u,v) does not generally reside on the
line through f(u,v) in the normal direction r(u,v), some means
of blending from the surface to the scrape boundary is needed. A
scrape boundary occurs when DT(u,v) = Ds(u,v). A simple blend-
ing method is to linearly move the surface towards the normal line
as Ds(u,v) -DT(u,v) goes from positive to zero. The blend factor
is defined as

= { DS(W)-DT(SV) ifO<D,(u,v)-DT(u,v) < H
1 i f H 5 Ds(u,v)-DT(u,v)

where H is a user-supplied blend distance. The blend factor is a p
plied to define the scrape result as

0 ifD,(u,v) -D=(u,v) < 0

P(u,v) = f(u,v)+~(u,v)r(u,v)+
q((f(u,v) -&4> -P(u,V))P(u,v)+
q((f(u,v) -f(u,v)) . d ~ l V > > d ~ , V)

Interval estimates are used so that the progressive transform may
capture the scrape result as a dyadic spline. An example of a single
scrape is shown in Figure 18.

where

The continuous offset-frame template edit becomes

where (um,Vm) is the domain point of maximum influence for
G(u,v). The transformA-’(um,v,) is optional, but has the desir-
able effect that pulling the control vector c in (x,y,z) space causes
the point f(u,v) to move in the same direction, as would happen
when pulling the control vectors of conventional basis functions.

Figure 18: A single “scrape” of a tool shape along a path.
6
This section provides the interval-query mechanism for precisely
sculpting a surface by moving a tool shape along a path in the sur-
face domain.

A single surface “scrape” is defined by specifying tool depth in
an o f f se t -he normal direction for each (u,v), where depth zero
occurs at a smoothed version of the surface. The offset frame tan-
gent and normal directions p(u, v), q(u,v) and r(u,v) are obtained
from A(u, v) as in the smoothinglroughening operations. The result
of scraping is defined by the maximum of the tool depth and the
depth of the original surface with respect to the smooth surface.

Let f (u , v) be a given surface and f(u, v) be the smoothed surface
for some smoothing parameter &. Let DT(u,v) be the given tool
depth function, and define the surface depth as

Precision Sculpting with Tool and Path
Superimposing multiple scrapes as a simultaneous operation is

performed by letting the tool depth function be defined as the max-
imum of the individual scrape tool depth functions

DT(u,v) = m+)i(u,v)

Otherwise the formulation above remains intact. The result of two
simultaneous scrapes is shown in Figure 19.

1

7 Conclusion and Future Work

The main discovexy, in reviewing this work, is that (a) it is not ob-
vious how to efficiently perform wavelet compression directly to
the results of mathematical surface operations, yet (b) it is possible
to be efficient when an intermediate interval-query oracle supplies

References

Figure 19: ’hvo overlayed surface scrapes.

local Bbier estimates. We demonstrated by example that formulat-
ing these operations as oracle responses is tractable for a significant
number of design modes that might be envisioned. We offer the
following thoughts on future challenges and potential applications:

The progressive decomposition algorithm should be applica-
ble to wavelet representations other than the dyadic splines.
Only two parts of the topdown algorithm have some sensi-
tivity to the wavelets chosen: the comparison of the wavelet
approximation versus the local estimate, and the incremen-
tal, sparse updates to the wavelet coefficients as more active
wavelets are added during processing. It seems liely that
these issues can be solved for many wavelet schemes, includ-
ing those defined on subdivision surfaces and volumes.

The choices of which domain intervals to split and which in-
tervals are “done” should be made with the desired norm in
mind. This seems to be fairly straightforward, but has not
been investigated so far.

0 usefulness for other wavelets

0 tuning for various norms

0 optimization of rate-distortion curves
A major difficulty is trying to approach the optimal rate-
distortion curves, especially early in the progressive approxi-
mation process. This is hard because the local estimates only
give fuzzy knowledge of the target function. Perhaps an adap
tive, recursive estimation strategy could be devised that would
improve this knowledge.

In the discussions in this paper, the applications of the pro-
gressive decomposition algorithm used ad hoc techniques to
provide local estimates to target functions. Current investi-
gations are under way to find general, automatic methods for
obtaining local estimates for a wide variety of target functions.

0 general techniques for providing local estimates

Acknowledgements

This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.

BARGHIEL, c., BARTELS, R., AND FORSEY, D. 1995. Pasting
spline surfaces. In Mathematical M e t M for Curves and Sur-
faces, Vanderbiilt University Press, Nashville, TN, 3 1 4 .

BERMAN, D. F., BARTELL, J. T., AND SALESIN, D. H. 1994.
Multiresolution painting and compositing. In Proceedings of
SZGGRAPH 94, ACM SIGGRAPH I ACM Press, Orlando,
Florida, Computer Graphics Proceedings, Annual Conference
Series, 85-90.

CASALE, M. S. 1987. Free-form solid modeling with trimmed
surface patches. IEEE Computer Graphics & Applications 7, 1
(January), 3343.

CIRAK, F., SCOTT, M. J., ANTONSSON, E. K., ORTIZ, M., AND
SCHRODER, P. 2002. Integrated modeling, finite-element anal-
ysis, and engineering design for thin-shell structures using sub-
division. Computer-Aided Design 34,2 (February), 137-148.

DEROSE, T. D., KASS, M., AND TRUONG, T. 1998. Sub-
division surfaces in character animation. In Proceedings of
SIGGRAPH 98, ACM SIGGRAPH I Addison Wesley, Orlando,
Florida, Computer Graphics Proceedings, Annual Conference
Series, 85-94.

DUCHAINEAU, M. A., WOLINSKY, M., SIGETI, D. E., MILLER,
M. C., ALDRICH, C., AND MINEEV-WEINSTEIN, M. B. 1997.
ROAMing terrain: Real-time optimally adapting meshes. ZEEE
Ksualiurtion ’97 (November), 81-88.

DUCHAINEAU, M. A. 1996. Dyadic Splines. PhD thesis,
Dept. of Computer Science, University of California, Davis.
http://graphics.cs.ucdavis.edu/ duchaineldyadic.html.

FARIN, G. 1999. NURBS: From Projective Geometry to Practical
Use. A.K. Peters, Natick MA.

FINKELSTEIN, A., AND SALESIN, D. H. 1994. Multiresolution
curves. In Proceedings of SIGGRAPH 94, ACM SIGGRAPH I
ACM Press, Orlando, Florida, Computer Graphics Proceedings,
Annual Conference Series, 261-268.

refinement. In Computer Graphics (Proceedings of SIGGRAPH
FORSEY, D. R., AND BARTELS, R. H. 1988. Hierarchical b-spline

88), V O ~ . 22,205-212.

GUSKOV, I., VIDIMCE, K., SWELDENS, w., AND SCHRODER, P.
2000. Normal meshes. Proceedings of SIGGRAPH 2000 (July),
95-102.

HOPPE, H. 1997. View-dependent refinement of progressive
meshes. In Proceedings of SIGGRAPH 97, ACM SIGGRAPH
/ Addison Wesley, Los Angeles, California, Computer Graphics
Proceedings, Annual Conference Series, 189-198.

JOY, K. 1991. Utilizing parametric hyperpatch methods for mod-
eling and display of free-form solids. In SMA ’91: Proceed-
ings of the First Symposium on Solid Modeling Foundations and
CAD/CAM Applications, ACM Press I ACM, held June 5-7,
1991 in Austin, Texas, USA., 245-254.

KASS, M. 1992. Condor: Constraint-based dataflow. In Computer
Graphics (Proceedings of SIGGRAPH 92), vol. 26,321-330.

LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced Sub-
division surfaces. In Proceedings of SIGGRAPH 2000, ACM
Press I ACM SIGGRAPH I Addison Wesley Longman, Com-
puter Graphics Proceedings, Annual Conference Series, 85-94.

http://graphics.cs.ucdavis.edu

LOUNSBERY, M. 1994. Multiresolution Analysis for Surfaces of
* Arbitrary Topological Type. PhD thesis, Dept. of Computer Sci-

ence and Engineering, U. of Washington.

* MILLER, G. S. P. 1986. The definition and rendering of terrain
maps. In Computer Graphics (Proceedings of SIGGRAPH 86),
vol. 20,39-48.

MOORE, R. E. 1979. Methodr and Applications of Interval Anal-
ysis. SIAM, Philadelphia.

PERRY, R. N., AND FRISKEN, s. F. 2001. Kizamu: A system
for sculpting digital characters. In proceedings of SIGGRAPH
2001, ACM Press / ACM SIGGRAPH, Computer Graphics Pro-
ceedings, Annual Conference Series, 47-56.

REQUICHA, A. A. G., AND VOELCKER, H. B. 1982. Solid mod-
eling: a historical summary and contempomy assessment. IEEE
Computer Graphics & Applications 2 (March), 9-22.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Computer Graphics (Ptv-
ceedings of SIGGRAPH 86), vol. 20,151-160.

SNYDER, J. M., AND KAJIYA, J. T. 1992. Generativemodeling: A
symbolic system for geometric modeling. In Computer Graphics
(Proceedings of SIGGRAPH 92), vol. 26,369-378.

STOLLNITZ, E. J., DEROSE, T. D., AND SALESIN, D. H. 1996.
Wavelets for Computer Graphics: Theory and Applications.
Morgann Kaufmann, San Francisco, CA.

WARNOCK, J. E. 1969. A hidden-surface algorithm for computer
generated half-tone pictures. Tech. Rep. TR 4-15, NTIS AS-733
671, Computer Science Department, University of Utah.

ZORIN, D., SCHRODER, P., AND SWELDENS, w. 1997. Interac-
tive multiresolution mesh editing. In Proceedings of SIGGRAPH
97, ACM SIGGRAPH / Addison Wesley, Los Angeles, Califor-
nia, Computer Graphics Proceedings, Annual Conference Series,
259-268.

